User:Abyssal/Portal:Ordovician

From Wikipedia, the free encyclopedia


The Ordovician Portal

Introduction

The Ordovician (/ɔːrdəˈvɪʃi.ən, -d-, -ˈvɪʃən/ or-də-VISH-ee-ən, -⁠doh-, -⁠VISH-ən) is a geologic period and system, the second of six periods of the Paleozoic Era. The Ordovician spans 41.6 million years from the end of the Cambrian Period 485.4 Ma (million years ago) to the start of the Silurian Period 443.8 Ma.

The Ordovician, named after the Welsh tribe of the Ordovices, was defined by Charles Lapworth in 1879 to resolve a dispute between followers of Adam Sedgwick and Roderick Murchison, who were placing the same rock beds in North Wales in the Cambrian and Silurian systems, respectively. Lapworth recognized that the fossil fauna in the disputed strata were different from those of either the Cambrian or the Silurian systems, and placed them in a system of their own. The Ordovician received international approval in 1960 (forty years after Lapworth's death), when it was adopted as an official period of the Paleozoic Era by the International Geological Congress.

Life continued to flourish during the Ordovician as it did in the earlier Cambrian Period, although the end of the period was marked by the Ordovician–Silurian extinction events. Invertebrates, namely molluscs and arthropods, dominated the oceans, with members of the latter group probably starting their establishment on land during this time, becoming fully established by the Devonian. The first land plants are known from this period. The Great Ordovician Biodiversification Event considerably increased the diversity of life. Fish, the world's first true vertebrates, continued to evolve, and those with jaws may have first appeared late in the period. About 100 times as many meteorites struck the Earth per year during the Ordovician compared with today. (Full article...)

Show new selections below (purge)

Selected article on the Ordovician world and its legacies

Streptelasma.
Streptelasma.
Cnidaria is a phylum of animals found exclusively in aquatic and mostly marine environments. Their distinguishing feature is cnidocytes, specialized cells that they use mainly for capturing prey. Their bodies consist of mesoglea, a non-living jelly-like substance, sandwiched between two layers of epithelium. They have two basic body forms: swimming medusae and sessile polyps, both of which are radially symmetrical with mouths surrounded by tentacles that bear cnidocytes. Many cnidarian species produce colonies that are single organisms composed of medusa-like or polyp-like zooids. Cnidarians' activities are coordinated by a decentralized nerve net. Many cnidarians have complex lifecycles with asexual polyp stages and sexual medusae, but some omit either the polyp or the medusa stage. Cnidarians are classified into four main groups: the almost wholly sessile Anthozoa (sea anemones, corals, sea pens); swimming Scyphozoa (jellyfish); Cubozoa (box jellies); and Hydrozoa, a diverse group that includes all the freshwater cnidarians as well as many marine forms.

Fossil cnidarians have been found in rocks formed about 580 million years ago, and other fossils show that corals may have been present shortly before 490 million years ago and diversified a few million years later. Fossils of cnidarians that do not build mineralized structures are very rare. Scientists currently think that cnidarians, ctenophores and bilaterians are more closely related to calcareous sponges than these are to other sponges, and that anthozoans are the evolutionary "aunts" or "sisters" of other cnidarians, and the most closely related to bilaterians. (see more...)

Selected article on the Ordovician in human science, culture and economics

Burning oil shale.
Burning oil shale.
Oil shale, also known as kerogen shale, is an organic-rich fine-grained sedimentary rock containing kerogen (a solid mixture of organic chemical compounds) from which liquid hydrocarbons called shale oil can be produced. Shale oil is a substitute for conventional crude oil; however, extracting shale oil from oil shale is more costly than the production of conventional crude oil both financially and in terms of its environmental impact. Deposits of oil shale occur around the world. Estimates of global deposits range from 2.8 to 3.3 trillion barrels (450×10^9 to 520×10^9 m3) of recoverable oil.

Heating oil shale to a sufficiently high temperature causes the chemical process of pyrolysis to yield a vapor. Upon cooling the vapor, the liquid shale oil—an unconventional oil—is separated from combustible oil-shale gas (the term shale gas can also refer to gas occurring naturally in shales). Oil shale can also be burned directly in furnaces as a low-grade fuel for power generation and district heating or used as a raw material in chemical and construction-materials processing.

Oil-shale mining and processing raise a number of environmental concerns, such as land use, waste disposal, water use, waste-water management, greenhouse-gas emissions and air pollution. Estonia and China have well-established oil shale industries, and Brazil, Germany, and Russia also utilize oil shale. (see more...)

Selected image

A fossil of the trilobite Pseudoasaphus praecurrens

A fossil of the trilobite Pseudoasaphus praecurrens. This specimen dates back 460 – 468 Million years ago to the Darriwilian age of the Middle Ordovician epoch and was discovered near Saint Petersburg, Russia in the Koporka River deposits. It is 18.4 x 10 x 4.4 cm in size and has a mass of about 580g.
Photo credit: Didier Descouens

Did you know?

Life restoration of Bumastus
Life restoration of Bumastus

Need help?

Do you have a question about Abyssal/Portal:Ordovician that you can't find the answer to?

Consider asking it at the Wikipedia reference desk.

Topics

Epochs - Early Ordovician - Middle Ordovician - Late Ordovician
Stages - Tremadocian - Floian - Dapingian - Darriwilian - Sandbian - Katian - Hirnantian
Events - Cambrian–Ordovician extinction event - Great Ordovician Biodiversification Event - Taconic orogeny - Late Ordovician glaciation - Alice Springs Orogeny - Ordovician–Silurian extinction event

Landmasses - Baltica - Gondwana - Laurentia - Siberia
Bodies of water - Iapetus Ocean - Khanty Ocean - Proto-Tethys Ocean - Rheic Ocean - Tornquist Sea - Ural Ocean
Animals - Articulate brachiopods - Bryozoans - Cornulitids - Crinoids - Cystoids - Gastropods - Graptolites - Jawed fishes - Nautiloids - Ostracoderms - Rugose corals - Star fishes - Tabulate corals - Tentaculitids - Trilobites
Trace fossils - Petroxestes - Trypanites
Plants - Marchantiophyta

Fossil sites - Beecher's Trilobite Bed - Walcott–Rust quarry
Stratigraphic units - Chazy Formation - Fezouata formation - Holston Formation - Kope Formation - Potsdam Sandstone - St. Peter Sandstone

Researchers - Charles Emerson Beecher - Charles Lapworth - Charles Doolittle Walcott
Culture - Animal Armageddon - List of creatures in the Walking with... series - Sea Monsters

Quality Content

Featured Ordovician articles - None
Good Ordovician articles - Brachiopod - Bryozoa - Chitinozoan - Marchantiophyta

Things you can do


Here are some tasks awaiting attention:

Current Ordovician FACs - none currently

Associated Wikimedia

The following Wikimedia Foundation sister projects provide more on this subject:

Category:Ordovician portal ·